Vibrational Spectra of Phenylphosphonic and Phenylthiophosphonic Acid and their Complete Assignment
نویسندگان
چکیده
The structures and conformational stabilities of phenylphosphonic acid and phenylthiophosphonic acid were investigated using calculations mostly at DFT/6-311G** and ab initioMP2/6-311G** level. From the calculations the molecules were predicted to exist in a conformational equilibrium consisting of two conformers which as enantiomers have the same energy, but rather unexpected dihedral angles XPCC (X being O or S) which are not equal to zero. The antisymmetric potential function for the internal rotation was determined for each one of the molecules. In these functions the conformers with zero dihedral angles appear to be stable minima (also optimization converges to this), but the vibrational frequency for the torsion turned out to be imaginary, indicating that they are maxima with respect to this symmetry coordinate. Only optimization without any restrictions and starting from a non-zero torsional angle converged to a real minimum with such a geometry (“non-planar”). For that minimum structure infrared and Raman spectra were calculated, and those for phenylphosphonic acid were compared to experimental data, showing satisfactory agreement. This gives confidence to present the spectra of phenylthiophosphonic acid as a prediction. The rather low intensity of the OH bands in the experimental infrared spectrum (as compared to normal organic acids) indicates rather weak hydrogen bonding. Normal coordinate calculations were carried out, and potential energy distributions were calculated for the molecules in the non (near)-planar conformations providing a complete assignment of the vibrational modes to atomic motions in the molecules. From the rather low rotational barriers we conclude, in agreement with results from the literature (for other P=O compounds) based on localized orbitals that conjugation effects are absent – or at least negligible – as compared to electrostatic and steric ones in determining the structures of the stable conformers in the phenyl derivatives. The P=O (and also the P=S) bond is highly polarized according to our analysis of Mulliken populations. The polarization turned out to be smaller in the thiophosphonic acid due to the smaller electronegativity of sulfur as compared to oxygen.
منابع مشابه
Theoretical Studies of the Vibrational Spectra and Molecular Structures of Dosulepin and Doxepin
Dosulepin and doxepin are tricyclic antidepressants. The molecular geometries, harmonic vibrational frequencies, quantum chemical parameters and thermodynamic properties of dosulepin and doxepin were calculated by Generalized Gradient Approximation methods developed by Perdew and Wang (GGA-PW91) and Becke-Lee-Yang-Parr (GGA-BLYP) in the gas phase and solution media. The local reactivity of thes...
متن کاملNMR and vibrational spectra of 2-methoxycarbonyl-7-methyl-1,3-thiazino[3,2- b][1,2,4]triazine-4,8-dione: a joint of experimental and DFT
The IR and NMR spectra were coupled with quantum chemical calculations in DFT approach usingthe hybrid B3LYP exchange-correlation functional to confirm the structure of 2-methoxycarbonyl-7-methyl-1,3-thiazino[3,2-b][1,2,4]triazine-4,8-dione 2d.
متن کاملAB Initio Study of Molecular Struture, Energetic and Vibrational Spectra of (GaN)4 Nanosemiconductor
In recent years there has been considerable interest in the structures, energies and thermodynamics of(GaN)4 clusters and it is the subject of many experimental and theoretical studies because of theirfundamental importance in chemical and physical process. All calculation of this study is carried outby Gaussian 98. Geometry optimization for (GaN)4 nanocluster are be fulfilled at B3LYP, B1LYPan...
متن کاملA confidence level algorithm for the determination of absolute configuration using vibrational circular dichroism or Raman optical activity.
Spectral comparison is an important part of the assignment of the absolute configuration (AC) by vibrational circular dichroism (VCD), or equally by Raman optical activity (ROA). In order to avoid bias caused by personal interpretation, numerical methods have been developed to compare measured and calculated spectra. Using a neighbourhood similarity measure, the agreement between a computed and...
متن کاملElectronic structure, Raman and infrared spectra, and vibrational assignment of carboplatin. Density functional theory studies
The molecular structure, vibrational frequencies, infrared intensities and Raman scattering activities of carboplatin were calculated by the modified mPW1PW91 (mPW) density functional model using several basis sets. The results from natural bond orbital (NBO) analysis have provided new insights into platinum–ligand bonding, the hybridization of atoms and the electronic structure of the title mo...
متن کامل